CERC 2012: Presentation of solutions

Jagiellonian University

November 28, 2012

Some numbers

Total submits: 1006
Accepted submits: 310

Some numbers

Total submits: 1006
Accepted submits: 310
First accept: 0:06:29, University of Wrocław Last accept: 4:59:39, University of Zagreb

Some numbers

Total submits: 1006
Accepted submits: 310
First accept: 0:06:29, University of Wrocław
Last accept: 4:59:39, University of Zagreb
Most determined team: CTU Prague, 23rd attempt on task C succesful.

Problem H Darts

Submits: 92
Accepted: 77
First solved by:
University of Wroclaw

(Bartłomiej Dudek, Maciej Dulęba, Mateusz Gołębiewski) 0:06:29

Author: Prof. Paweł Idziak

Problem C Chemist's Vows

Submits: 197
Accepted: 64
First solved by:
Charles University in Prague (Jakub Zíka, Filip Hlásek, Lukáš Folwarczný) 0:13:33

Very simple dynamic programming.

Very simple dynamic programming.
Can say word[1..k] if:

Very simple dynamic programming.
Can say word[1..k] if:

- can say word[1.. $k-2]$ and last two letters are an element symbol,

Very simple dynamic programming.
Can say word[1..k] if:

- can say word[1.. $k-2$] and last two letters are an element symbol,
- or can say word $[1 . . k-1]$ and last letter is an element symbol.

Very simple dynamic programming.
Can say word[1..k] if:

- can say word[1.. $k-2]$ and last two letters are an element symbol,
- or can say word $[1 . . k-1]$ and last letter is an element symbol.

For every k iterate through all elements.

PROBLEM?

Problem A Kingdoms

Submits: 115
Accepted: 42
First solved by:
University of Warsaw
(Tomasz Kociumaka, Marcin Andrychowicz, Maciej Klimek) 0:16:21

Author: Leszek Horwath

- Make a graph:
- Make a graph:
- $2^{n}-1$ vertices-every nonempty subset of kingdoms;

- Make a graph:
- $2^{n}-1$ vertices-every nonempty subset of kingdoms;
- for every vertex compute which kingdoms can bankrupt and add corresponding edges.
- Make a graph:
- $2^{n}-1$ vertices-every nonempty subset of kingdoms;
- for every vertex compute which kingdoms can bankrupt and add corresponding edges.
- Use DFS to find vertices reachable from the vertex $\{1,2, \ldots, n\}$.
- Make a graph:
- $2^{n}-1$ vertices-every nonempty subset of kingdoms;
- for every vertex compute which kingdoms can bankrupt and add corresponding edges.
- Use DFS to find vertices reachable from the vertex $\{1,2, \ldots, n\}$.
- For each i check whether the vertex $\{i\}$ is reachable.
- Make a graph:
- $2^{n}-1$ vertices-every nonempty subset of kingdoms;
- for every vertex compute which kingdoms can bankrupt and add corresponding edges.
- Use DFS to find vertices reachable from the vertex $\{1,2, \ldots, n\}$.
- For each i check whether the vertex $\{i\}$ is reachable.
- Make a graph:
- $2^{n}-1$ vertices-every nonempty subset of kingdoms;
- for every vertex compute which kingdoms can bankrupt and add corresponding edges.
- Use DFS to find vertices reachable from the vertex $\{1,2, \ldots, n\}$.
- For each i check whether the vertex $\{i\}$ is reachable.

Running time: $O\left(2^{n} n^{2}\right)$

Problem J Conservation

Submits: 132
Accepted: 40

First solved by: Jagiellonian University in Kraków (Piotr Bejda, Michał Sapalski, Igor Adamski) 0:28:25

Author: Adam Polak

Sort the stages topologically:

Sort the stages topologically:

- hold a queue Q of stages with indegree 0
- take stages from Q and remove them from the graph

Sort the stages topologically:

- hold a queue Q of stages with indegree 0
- take stages from Q and remove them from the graph

Optimize greedily:

Sort the stages topologically:

- hold a queue Q of stages with indegree 0
- take stages from Q and remove them from the graph

Optimize greedily:

- completing a stage cannot harm the others
- we can lose nothing by performing it immediately

Sort the stages topologically:

- hold a queue Q of stages with indegree 0
- take stages from Q and remove them from the graph

Optimize greedily:

- completing a stage cannot harm the others
- we can lose nothing by performing it immediately
- use two queues Q_{1} and Q_{2}, switching only when you have to

Running time: $O(n+m)$

Problem E Word equations

Submits: 154
Accepted: 29
First solved by:
Comenius University
(Tomáš Belan, Vladimír Boža, Peter Fulla) 0:36:20

Without equations-simple greedy algorithm:

Without equations-simple greedy algorithm:

- keep a count C of matched pattern symbols
- for each symbol in the text, increase C if the symbols match

Without equations-simple greedy algorithm:

- keep a count C of matched pattern symbols
- for each symbol in the text, increase C if the symbols match

Running time: $O(|T||P|)=O\left(2^{k}|P|\right)$

With equations-dynamic programming:

With equations-dynamic programming:

- define $m(S, i)=$ the value of C after checking S, assuming the check started with $C=i$

With equations-dynamic programming:

- define $m(S, i)=$ the value of C after checking S, assuming the check started with $C=i$
- for equations " $S=$ word", calculate $m(S, i)$ greedily
- for equations " $S=S_{1}+S_{2}$ ", we have $m(S, i)=m\left(S_{2}, m\left(S_{1}, i\right)\right)$

With equations-dynamic programming:

- define $m(S, i)=$ the value of C after checking S, assuming the check started with $C=i$
- for equations " $S=$ word", calculate $m(S, i)$ greedily
- for equations " $S=S_{1}+S_{2}$ ", we have $m(S, i)=m\left(S_{2}, m\left(S_{1}, i\right)\right)$
- calculate bottom-up or use memoization

Running time: $O(k|P|)$

With equations-dynamic programming:

- define $m(S, i)=$ the value of C after checking S, assuming the check started with $C=i$
- for equations " $S=$ word", calculate $m(S, i)$ greedily
- for equations " $S=S_{1}+S_{2}$ ", we have $m(S, i)=m\left(S_{2}, m\left(S_{1}, i\right)\right)$
- calculate bottom-up or use memoization

Running time: $O(k|P|)$
Simplification: C never decreases, therefore it is enough to memoize the last query for each S.

Problem D Non-boring sequences

Submits: 139
Accepted: 20
First solved by:
University of Zagreb (Ivan Katanic, Stjepan Glavina, Goran Žužić) 1:18:26

Author: Adam Polak

The idea is pretty simple:

The idea is pretty simple:

- Find any unique element in the whole sequence...

The idea is pretty simple:

- Find any unique element in the whole sequence...
- ... and recurse on both halves.

$$
\underbrace{121}_{\text {recurse }} 4 \underbrace{121312}_{\text {recurse }}
$$

The idea is pretty simple:

- Find any unique element in the whole sequence...
- ... and recurse on both halves.

$$
\underbrace{121}_{\text {recurse }} 4 \underbrace{121312}_{\text {recurse }}
$$

How to find a unique element effectively?

How to find a unique element effectively?

How to find a unique element effectively?

- For every element x, compute the positions of the closest ones (in both directions) identical to x.

How to find a unique element effectively?

- For every element x, compute the positions of the closest ones (in both directions) identical to x.
- Now you can find whether a given element is unique in a given interval in $O(1)$ time.

How to find a unique element effectively?

- For every element x, compute the positions of the closest ones (in both directions) identical to x.
- Now you can find whether a given element is unique in a given interval in $O(1)$ time.
- In every recursive step, simply iterate over all elements...

How to find a unique element effectively?

- For every element x, compute the positions of the closest ones (in both directions) identical to x.
- Now you can find whether a given element is unique in a given interval in $O(1)$ time.
- In every recursive step, simply iterate over all elements...
- ... in parallel, starting from both sides.

How to find a unique element effectively?

- For every element x, compute the positions of the closest ones (in both directions) identical to x.
- Now you can find whether a given element is unique in a given interval in $O(1)$ time.
- In every recursive step, simply iterate over all elements...
- ... in parallel, starting from both sides.

What is the running time?

How to find a unique element effectively?

- For every element x, compute the positions of the closest ones (in both directions) identical to x.
- Now you can find whether a given element is unique in a given interval in $O(1)$ time.
- In every recursive step, simply iterate over all elements ...
- ... in parallel, starting from both sides.

What is the running time?

$$
T(n)=\max _{0<k<n} T(k)+T(n-k)+\min (k, n-k)
$$

How to find a unique element effectively?

- For every element x, compute the positions of the closest ones (in both directions) identical to x.
- Now you can find whether a given element is unique in a given interval in $O(1)$ time.
- In every recursive step, simply iterate over all elements ...
- ... in parallel, starting from both sides.

What is the running time?

$$
T(n)=\max _{0<k<n} T(k)+T(n-k)+\min (k, n-k)
$$

$$
T(n)=O(n \lg n)
$$

Problem I
 The Dragon and the knights

Submits: 50
Accepted: 14
First solved by:
Jagiellonian University in Kraków (Jakub Adamek, Grzegorz Guśpiel, Jonasz Pamuła)
1:10:45

Author: Bartosz Walczak

An $O\left(\left(n^{2}+m\right) \log n\right)$ solution: plane partition and point location

An $O\left(\left(n^{2}+m\right) \log n\right)$ solution: plane partition and point location Another $O\left(\left(n^{2}+m\right) \log n\right)$ solution: plane sweep

An $O\left(\left(n^{2}+m\right) \log n\right)$ solution: plane partition and point location Another $O\left(\left(n^{2}+m\right) \log n\right)$ solution: plane sweep

Easy $O(n \cdot m)$ solution:
(1) Count the number of all districts.
(2) Count the number of occupied districts.

- Answer PROTECTED if the two numbers are equal.

An $O\left(\left(n^{2}+m\right) \log n\right)$ solution: plane partition and point location Another $O\left(\left(n^{2}+m\right) \log n\right)$ solution: plane sweep

Easy $O(n \cdot m)$ solution:
(1) Count the number of all districts.
(2) Count the number of occupied districts.
(3) Answer PROTECTED if the two numbers are equal.

Counting all districts:

- $n=$ the number of rivers
- $p=$ the number of pairs of non-parallel rivers
- the number of districts $=p+n+1$ (induction, Euler's formula, etc.)

An $O\left(\left(n^{2}+m\right) \log n\right)$ solution: plane partition and point location Another $O\left(\left(n^{2}+m\right) \log n\right)$ solution: plane sweep

Easy $O(n \cdot m)$ solution:
(1) Count the number of all districts.
(2) Count the number of occupied districts.
(3) Answer PROTECTED if the two numbers are equal.

Counting all districts:

- $n=$ the number of rivers
- $p=$ the number of pairs of non-parallel rivers
- the number of districts $=p+n+1$ (induction, Euler's formula, etc.)

Counting protected districts:

- start with a single class containing all the knights
- add rivers one by one; one river may split each partition class into two
- count the final number of partition classes

Problem K Graphic Madness

Submits: 28
Accepted: 11
First solved by:
University of Wrocław
(Bartłomiej Dudek, Maciej Dulęba, Mateusz Gołębiewski) 2:34:41

Author: Jakub Pachocki

How to find a Hamiltonian cycle in a graph composed of two trees T_{1}, T_{2} joined by leaves?

How to find a Hamiltonian cycle in a graph composed of two trees T_{1}, T_{2} joined by leaves?

Note that the intersection of any such cycle and one of the trees is a matching between leaves with disjoint paths.

How to find a Hamiltonian cycle in a graph composed of two trees T_{1}, T_{2} joined by leaves?

Note that the intersection of any such cycle and one of the trees is a matching between leaves with disjoint paths.

Root T_{i}. For every vertex v other than the root, discard the edge leading up from v if the subtree rooted in v contains an even number of leaves.

How to find a Hamiltonian cycle in a graph composed of two trees T_{1}, T_{2} joined by leaves?

Note that the intersection of any such cycle and one of the trees is a matching between leaves with disjoint paths.

Root T_{i}. For every vertex v other than the root, discard the edge leading up from v if the subtree rooted in v contains an even number of leaves.

Check if the remaining edges form a Hamiltonian cycle.

Problem G Jewel heist

Submits: 38
Accepted: 10
First solved by:
Jagiellonian University in Kraków
(Piotr Bejda, Michał Sapalski, Igor Adamski)
1:33:57

Author: Piotr Micek \& Lech Duraj

Imagine that we "sweep" the plane bottom-up with a horizontal line.

Imagine that we "sweep" the plane bottom-up with a horizontal line.

Imagine that we "sweep" the plane bottom-up with a horizontal line.
aCm Intornaloner acitastert

Imagine that we "sweep" the plane bottom-up with a horizontal line. Every point that has been swept stays on the line.

Imagine that we "sweep" the plane bottom-up with a horizontal line. Every point that has been swept stays on the line.

Imagine that we "sweep" the plane bottom-up with a horizontal line. Every point that has been swept stays on the line.

Imagine that we "sweep" the plane bottom-up with a horizontal line. Every point that has been swept stays on the line.
A bottomless rectangle now corresponds to a gap between consecutive points of the same colour.

Imagine that we "sweep" the plane bottom-up with a horizontal line. Every point that has been swept stays on the line.
A bottomless rectangle now corresponds to a gap between consecutive points of the same colour.

We detect a gap at the moment it is destroyed.

We detect a gap at the moment it is destroyed. When a new point is inserted, we look at its same-colour neighbours and count the points between them.

We detect a gap at the moment it is destroyed.
When a new point is inserted, we look at its same-colour neighbours and count the points between them.
It is enough to know how many points are to the left of a given one.

We detect a gap at the moment it is destroyed.
When a new point is inserted, we look at its same-colour neighbours and count the points between them.
It is enough to know how many points are to the left of a given one.
Fenwick tree, $O(n \log n)$ total time.

We detect a gap at the moment it is destroyed. When a new point is inserted, we look at its same-colour neighbours and count the points between them.
It is enough to know how many points are to the left of a given one.
Fenwick tree, $O(n \log n)$ total time.
Some gaps survived the whole sweeping. We count them with one additional loop at the end.

Problem B Who wants to live forever?

Submits: 58
Accepted: 3
First solved by:
University of Warsaw
(Jakub Oćwieja, Mirosław Michalski, Jarosław Błasiok) 2:12:22

Author: Arkadiusz Pawlik

Assume our sequence is $x_{1} x_{2} x_{3} \ldots x_{n}$.

Assume our sequence is $x_{1} x_{2} x_{3} \ldots x_{n}$.

- If it is all zeroes, the universe definitely dies.

Assume our sequence is $x_{1} x_{2} x_{3} \ldots x_{n}$.

- If it is all zeroes, the universe definitely dies.
- Otherwise, if n is even, the universe lives forever.

Assume our sequence is $x_{1} x_{2} x_{3} \ldots x_{n}$.

- If it is all zeroes, the universe definitely dies.
- Otherwise, if n is even, the universe lives forever.
- Otherwise, let x^{\prime} be x after one discrete step.

Assume our sequence is $x_{1} x_{2} x_{3} \ldots x_{n}$.

- If it is all zeroes, the universe definitely dies.
- Otherwise, if n is even, the universe lives forever.
- Otherwise, let x^{\prime} be x after one discrete step.
- Then the universe dies if and only if both $x_{2} x_{4} x_{6} \ldots x_{n-1}$ and $x_{2}^{\prime} x_{4}^{\prime} x_{6}^{\prime} \ldots x_{n-1}^{\prime}$ die.
This is because the even steps of the evolution of $x_{2}, x_{4}, \ldots, x_{n-1}$ are independent of the rest of the sequence.

Assume our sequence is $x_{1} x_{2} x_{3} \ldots x_{n}$.

- If it is all zeroes, the universe definitely dies.
- Otherwise, if n is even, the universe lives forever.
- Otherwise, let x^{\prime} be x after one discrete step.
- Then the universe dies if and only if both $x_{2} x_{4} x_{6} \ldots x_{n-1}$ and $x_{2}^{\prime} x_{4}^{\prime} x_{6}^{\prime} \ldots x_{n-1}^{\prime}$ die.
This is because the even steps of the evolution of $x_{2}, x_{4}, \ldots, x_{n-1}$ are independent of the rest of the sequence. This leads to an $O(n \log n)$ solution.

We can also characterize the 'finite' universes directly.

We can also characterize the 'finite' universes directly.

- Let k be maximum such that $2^{k} \mid n+1$.

We can also characterize the 'finite' universes directly.

- Let k be maximum such that $2^{k} \mid n+1$.
- Then, the universe dies if and only if it is of the form:

$$
w 0 \hat{w} 0 w \ldots 0 \hat{w} 0 w
$$

where w is some binary string of length $2^{k}-1$ and \hat{w} is its reverse.

Problem F Farm and factory

Submits: 0
Accepted: 0
First solved by: nobody :(

Author: Jakub Pachocki

Let G be the original graph and G^{\prime} be the graph with the capital c added. Let $d(u, v)$ be the distance between u and v in G and $d^{\prime}(u, v)$ be the distance between u and v in G^{\prime}.

Let G be the original graph and G^{\prime} be the graph with the capital c added. Let $d(u, v)$ be the distance between u and v in G and $d^{\prime}(u, v)$ be the distance between u and v in G^{\prime}.

Note that $d(1, u)=d^{\prime}(1, u)$ and $d(2, u)=d^{\prime}(2, u)$ for all u, v in G. Let us denote $x_{u}=d(1, u)$ and $y_{u}=d(2, u)$.

Let G be the original graph and G^{\prime} be the graph with the capital c added. Let $d(u, v)$ be the distance between u and v in G and $d^{\prime}(u, v)$ be the distance between u and v in G^{\prime}.

Note that $d(1, u)=d^{\prime}(1, u)$ and $d(2, u)=d^{\prime}(2, u)$ for all u, v in G. Let us denote $x_{u}=d(1, u)$ and $y_{u}=d(2, u)$.

Then it must hold for all u, v that $d^{\prime}(u, v) \geq \max \left(\left|x_{u}-x_{v}\right|,\left|y_{u}-y_{v}\right|\right)$.

Let G be the original graph and G^{\prime} be the graph with the capital c added. Let $d(u, v)$ be the distance between u and v in G and $d^{\prime}(u, v)$ be the distance between u and v in G^{\prime}.

Note that $d(1, u)=d^{\prime}(1, u)$ and $d(2, u)=d^{\prime}(2, u)$ for all u, v in G. Let us denote $x_{u}=d(1, u)$ and $y_{u}=d(2, u)$.

Then it must hold for all u, v that $d^{\prime}(u, v) \geq \max \left(\left|x_{u}-x_{v}\right|,\left|y_{u}-y_{v}\right|\right)$.
If we fix some nonnegative x_{c} and y_{c} where $x_{c}+y_{c} \geq d(1,2)$, then for all u we can add the edge (c, u) with cost $\max \left(\left|x_{c}-x_{u}\right|,\left|y_{c}-y_{u}\right|\right)$.

Let G be the original graph and G^{\prime} be the graph with the capital c added. Let $d(u, v)$ be the distance between u and v in G and $d^{\prime}(u, v)$ be the distance between u and v in G^{\prime}.

Note that $d(1, u)=d^{\prime}(1, u)$ and $d(2, u)=d^{\prime}(2, u)$ for all u, v in G. Let us denote $x_{u}=d(1, u)$ and $y_{u}=d(2, u)$.

Then it must hold for all u, v that $d^{\prime}(u, v) \geq \max \left(\left|x_{u}-x_{v}\right|,\left|y_{u}-y_{v}\right|\right)$.
If we fix some nonnegative x_{c} and y_{c} where $x_{c}+y_{c} \geq d(1,2)$, then for all u we can add the edge (c, u) with cost $\max \left(\left|x_{c}-x_{u}\right|,\left|y_{c}-y_{u}\right|\right)$.

The cost will therefore be equal to:

$$
\sum_{u} \max \left(\left|x_{c}-x_{u}\right|,\left|y_{c}-y_{u}\right|\right)
$$

How to select the best x_{c}, y_{c} ?

How to select the best x_{c}, y_{c} ?

- First, draw all points $\left(x_{u}, y_{u}\right)$ on the plane. We want to find a 'median' of the points in the maximum metric: $\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$.

How to select the best x_{c}, y_{c} ?

- First, draw all points $\left(x_{u}, y_{u}\right)$ on the plane. We want to find a 'median' of the points in the maximum metric: $\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$.
- Rotate the plane by 45 degrees.

How to select the best x_{c}, y_{c} ?

- First, draw all points $\left(x_{u}, y_{u}\right)$ on the plane. We want to find a 'median' of the points in the maximum metric: $\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$.
- Rotate the plane by 45 degrees.
- Now we want to find a 'median' in the Manhattan distance metric: $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$.

How to select the best x_{c}, y_{c} ?

- First, draw all points $\left(x_{u}, y_{u}\right)$ on the plane. We want to find a 'median' of the points in the maximum metric: $\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$.
- Rotate the plane by 45 degrees.
- Now we want to find a 'median' in the Manhattan distance metric: $\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|$.
- It is easy: just find the median of the new x and y coordinates!

